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Background

• Ethereum: computer 
programs on the blockchain


• Externally Owned Accounts 
(EOAs)


• Smart Contract: deploy on 
Ethereum


• Dapp: public smart contract
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3,137 Dapps 63.77k active users Over 1 million transactions 7.55 million USD

No extensive forensic analysis14K Ethers from the victim Fomo3D

Requirement Facts

Background



Research Questions

   What like  and how the attacks launch on real-world Dapps?

  How to automatically reconstruct Dapp attacks？

  How to find new attack and 0-day victim Dapps?



Transaction based Forensic Analysis

TO 0x54*
FROM 0x73*
VALUE 0.01 Ether

DATA
0xc52ab778
(methodID of
function execute())

GAS
PRICE

6.3x10-9 Ether
(6.3 Gwei)

u (0x73*, 0x54*, execute(0xa6*), 0.1 ETH)
v (0x54*, 0xa6*, airDropPot_(), 0 ETH)
w (0x54*, 0xa6*, airDropTracker_(), 0 ETH)
x (0x54*, 0x07*, execute(0xa6*), 0.1 ETH)
y (0x07*, 0xf7*, create, 0.1 ETH)
z (0xf7*, 0xa6*, buyXid(0x0000), 0.1 ETH)
....
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Example of transaction execution traces. 

 : exploit contract, : contract generated in execution, : Dapp, : EOA.

Transaction’s Execution Trace
A Transaction data 
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Data Collection and Derivation

Table 1: Real-world Dapp attacks
Attack type Definition # attack incidents

Bad randomness adversary predicts the random value produced by the Dapp running a weak
pseudo-random number generator (PRNG) to gain advantage (e.g., in a game) 6

Denial of service
adversary seeks to prevent legitimate invocations of a smart contract, through
exhaustion of gas (constrained by block gas limit [36]) or improper check of

exceptional conditions [41]
4

Integer overflow and underflow an incorrect arithmetic operation that causes its result to exceed the maximum
size of the integer type or go below its minimum value that can be represented 26

Reentrancy attack a contract calls an external contract that unexpectedly calls back to the calling
contract, rendering it operate in an inconsistent internal state [33] 2

Improper authentication

adversary exploits the authentication process that a Dapp uses to verify the
ownership of resources, to enforce a behavioral workflow or to access a variable.
It could be caused by typographical errors in contract implementation or missing

protection on critical variables

15

Table 2: Known Dapp attacks. Ds is the set of data collected from the reports, and De includes those derived.
Attack type # of Dapps # of exploit contracts # of attacker EOAs # of attack transactions

Ds De Ds De Ds De Ds De
Bad randomness 4 14 9 19 9 27 14 40,766

DoS 4 6 3 3 5 88 4 17,088
Integer overflow/underflow 13 32 1 2 28 53 47 591

Reentrancy 2 2 2 3 2 4 2 30
Improper authentication 12 18 6 18 17 60 34 575

Unique total 25 56 20 45 48 227 77 58,555

3.1 Data Collection and Derivation

Here we elaborate on the design and implementation of a
methodology for deriving comprehensive transactions related
to Ethereum Dapp attack incidents (i.e., exploit transactions)
from limited attack information in technical blogs and reports.

Exploit transaction collection. We first searched the Inter-
net to collect real-world Ethereum Dapp attack incidents. In
particular, we investigate three types of incident reporting
sources, including technical blogs, news posts, and annual
security reports from blockchain security companies. From
these sources, we further manually picked out those related to
Ethereum Dapp attacks. Details of these incident reports are
present in Table 9 in Appendix. Then, we reviewed these inci-
dent reports to identify immutable attack-related information
(i.e, Ds), including victim Dapp addresses, exploit contract
addresses, attacker EOAs, and exploit transaction hashes. In
this way, we identified 42 Dapp attack incidents from 2016
to 2018, which consist of 25 victim Dapps, 20 exploit con-
tract addresses, 48 attacker EOAs, and 77 exploit transaction
hashes. Table 2 summarizes attack information we collected
from the reports.

To reconstruct the reported incidents, we will look into all
transactions, which were issued by attacker EOAs or exploit
contracts to interact with the victim Dapps. However, such
EOAs and exploit contracts may not be fully documented by
the reports (see Table 2). Here we elaborate a methodology
for finding the missing EOAs and exploit contracts.

First, to identify other EOAs in an attack incident, we in-
clude in the attack set all the EOAs that have created, called or
transferred fund into known exploit contracts, or have trans-

ferred fund to known attacker EOAs. More specifically, we
examine the transactions, whose to or from fields contain
reported attacker EOAs or exploit contracts. Here we con-
sider an address to be an EOA but not a contract if no code
is associated with it. For this purpose, we use the function
extcodesize() in solidity or w3.eth.getCode() in python to get
the size of the associated EVM code. A problem is that a
under-construction or self-destructed contract also reports a
zero code size. The former is less of a concern since a under-
construction contract does not produce a transaction. In the
latter case, to determine whether an address belongs to a self-
destructed contract, we search for its creation transaction, the
one whose contractAddress field contains that address.

Further we expand the seed attack set Ds by adding the con-
tracts that are similar to the exploit one and have been called
by attacker EOAs. More specifically, we extract the contract
addresses, which were called by attacker EOAs, within a time
window (1 day in our study) before and after the exploit
transactions. Then we analyze the similarity of the extracted
contracts and the exploit contract. In particular, we convert the
bytecodes into opcodes using Octopus [6], and then calculate
their Jaccard similarity. When they come close (Jaccard simi-
larity � 0.9), we consider them to be similar and the extracted
one to be an exploit contract. Note that the adversary can use
suicide operations or self-destructive operations to conceal
his exploit contracts. In this case we recover the bytecode of a
self-destructed contract from the data field of the contract’s
creation transaction (see Figure 8(b)).

In this way, we built an expanded dataset De, which con-
tains 45 exploit contract addresses, and 227 attacker EOAs.
We consider the exploit transactions to be (1) all those re-

4

Analyzing Exploit Transactions



Analyzing Exploit Transactions
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Analyzing Exploit Transactions

execute airDropPot

Preparation: Testing contracts or transferring fund

Testing transaction in preparation stage.

call

Contract Creation



Exploit contract evolution at the exploitation stage. 
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DEFIER: Idea and Design
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Figure 6: Sequence representation.

    Preprocessing

   Sequence-based Classification



DEFIER: Idea and Design

Transaction clustering

    Preprocessing

  Structure similarity

  Timing closeness



DEFIER: Idea and Design
   Sequence-based Classification

Output types: normal, preparation, 
exploitation, propagation and 
completion.
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EOA-Dapp-execution attention model: 
highlight the useful information related to the 
EOA’s intent on the Dapp.



Discussing the Result
Table 6: Dataset and evaluation results.

Dataset # transactions Results

Groundtruth set
badset 57,855 premicro 98.2%, premacro 92.4%

goodset 39,124 recmicro 98.1%, recmacro 98.4%
Unknown set 2,350,779 positive 476,334

Sampled testset 30,888
premicro 91.7%
premacro 83.6%

premicro and premacro: micro of precision, macro of precision
recmicro and recmacro: micro of recall, macro of recall
positive: transactions that labeled as one of attack stages

whole Sequence-based classification module, including the
LSTM and the MLP, can be trained together through stochas-
tic gradient descent, a typical way to train such a complicated
model [14], on labeled data (Section 4.4). In our study, we
built a Bi-LSTM with three folds, whose convolution sizes
were 128, hidden sizes were 256 and batch sizes were 128.
The epochs were set as 20 and learning rate was set as 0.0001.
The hidden size of MLP was set as 256.

4.4 Evaluation

Here we evaluate DEFIER and elaborate on the challenges in
multi-stage exploit transaction identification.

Evaluation with groundtruth set. We evaluated DEFIER

over the following ground-truth dataset as shown in Table
6: for the bad set, we collected 57,855 transaction sequences
associated with Dapp attacks from our measurement study. In
particular, for exploit transactions in the same attack stage,
we first order them by timestamp, and then define a sliding
context window with the size of w (w=8 in our implemen-
tation) to chunk the time-ordered transactions into transac-
tion sequences. Finally, we label those transaction sequences
by their attack stages. We detail the annotation process in
Appendix 7.3. In this way, we built a bad set with 57,855
transactions (469 at the attack preparation stage, 22,333 at the
exploit stage, 34,763 at the attack propagation stage and 290
at the mission completion stage). The transactions of good
set were gathered from 56 victim Dapps related to the bad
set and 318 manually checked normal EOAs on these Dapps.
Specifically, we ran the module of Preprocessing to generate
the transaction sequences with the same size of context win-
dow. In this way, we construct a good set with 39,124 normal
transaction sequences. Running on these sets under 10-fold
cross validation, DEFIER shows a micro-precision of 98.2%,
a macro-precision of 92.4%, a micro-recall of 98.1% and a
macro-recall of 98.4%.

Table 7: Performance comparison in different models
Method Attention precision recall F1
RNN no attention 0.965 0.962 0.963
RNN attention 0.974 0.969 0.971
LSTM no attention 0.977 0.975 0.976
LSTM attention 0.982 0.981 0.981

(a) Model performance with dif-
ferent window size

(b) ROC

Figure 10: Evaluation results.

Missed cases. On the ground-truth dataset, seven cases were
missed by DEFIER. These transactions fell through the cracks
due to inadequate attack-related semantic content in their
clusters. In three cases, we found that the size of the sliding
context window is not large enough to capture some attack
behaviors, and as a result, the adversary’s operational intents
and the attack stages could not be determined. In other cases,
the problem comes from the presence of reverted transactions,
whose original execution traces cannot be obtained, which
prevents DEFIER from building up their transaction graphs.

Determining the number of missed malicious transactions
in the large-scale unknown set (with more than 2.3 million
transactions, 342K clusters) is challenging. What we did in
our research was to flag a transaction cluster as the class
types with the largest predicted probability, as well as the
second largest predicted probability when it is greater than 0.5.
This strategy will include more flagged cases, at the expense
of precision. In this way, our approach flagged 1,069 more
transaction clusters. We manually analyzed all of them and
found 167 new exploit transaction clusters. Looking into these
missed cases, we found that 146 cases were caused by the
window size or reverted transactions, as mentioned above. The
remaining 21 cases resulted from the lack of Dapp information
for transaction graph node labeling (see Section 3.1). This
problem can be handled by a more comprehensive Dapp list.

Falsely detected cases. We also found two major causes for
the 322 false positives observed in our study (Section 4.5).
Those transaction clusters are either semantically similar to
the clusters in another attack stage, or having attack patterns
of multiple attack stages. For example, when attackers evolve
their attack strategy (Section 3.2) frequently without exploita-
tion behavior, our model may misclassify these exploitation
clusters as attack preparation clusters. This is because the
transactions during attack strategy evolution can be semanti-
cally similar to those for attack preparation: the adversary kept
using new exploit contracts to interact with a Dapp, and attack
costs were transferred to the new exploit contract to bootstrap
attack. The second type of false positives is caused by the
incorrect transaction clustering. For example, one transaction
cluster of CityMayor consists of the transactions at attack
preparation stage and exploitation stage, because the time
interval between these transactions is small (≤ 10 minutes),
and the similarity of these transactions is large (average TG
distance ≤ 0.33).



Discussing the Result

Table 8: Performance comparison in different epochs
Epoch learningrate precision recall F1

10 0.001 0.965 0.962 0.963
20 0.001 0.982 0.981 0.981
50 0.001 0.980 0.980 0.980
100 0.001 0.994 0.980 0.980

Table 9: Performance comparison in different learning rates
Epoch learningrate precision recall F1

20 0.1 0.958 0.914 0.932
20 0.01 0.978 0.977 0.977
20 0.001 0.982 0.981 0.981
20 0.0001 0.985 0.982 0.983
20 0.00001 0.918 0.906 0.908

Parameter and model selection. In Section 4.2, the size
of the sliding context window w controls the length of the
transactions used to inspect the operational context. Here
a small window size might contain inadequate information
about the operational context, while a large window may bring
in the information across different stages, which leads to noise.
In our research, we analyzed the impact of various w (5, 8, 10),
as illustrated in Figure 10(a) and 10(b), over the ground-truth
dataset, and chose the one with the best performance (w = 8).

Parameters such as the number of epochs and the learning
rates for the LSTM model are used to control the performance
of the model. In our study, we tuned the model by varying
the number of epochs from 10 to 100 and the learning rates
from 0.00001 to 0.1. From the result shown in Table 8 and
Table 9, we can see that the classification performs best under
20 epochs and a learning rate of 0.0001.

In our study, we compared the effectiveness of RNN and
LSTM models on the sequence classification tasks. Specifi-
cally, we implemented four models: RNN, RNN with atten-
tion, LSTM, LSTM with attention on the groundtruth dataset
and evaluated their effectiveness using 10-fold cross valida-
tion. Similar to the LSTM model we used (Section 4.3), the
backbone of the RNN is also three layers 128 * 256 * 128 with
the batch size of 128. Table 7 shows the results. We observe
that the LSTM with attention outperforms other sequence
classification models.

4.5 Discovery and New Findings

We collected 104 popular Dapps and their corresponding con-
tract addresses from a Dapp ranking list [8]. On these Dapps,
we ran the Preprocessing to gather 2,350,779 transactions
from Ethereum and construct 342,224 transaction clusters.
Note that we eliminate all the transactions used in the mea-

surement study (Section 3). DEFIER inspected these trans-
actions and labeled 476,342 of them (100,081 clusters) with
one of the attack stages. These transactions are related to
attacks on 85 victim Dapps. For each victim Dapp, we ran-
domly sampled 4% of the reported transaction clusters for
manual validation. In total, we manually investigated 4,003

Table 10: Victim Dapps in different categories.

Type
#

Dapps/0-
day

# attacker
EOAs/0-day

# exploit
transactions/0-

day

ex. of victim
Dapps

Gam-
bling

51/43
65,778
/11,339

360,524
/114,473

Lucky
Blocks

Game 28/27 959/919
52,673
/52,176

SpaceWar

Finance 5/5 183/183
59,872
/59,872

STOX

Token 2/1 279/167 4,478/472
Power of
Bubble

Total 85/75
67,199
/12,608

476,342
/226,763

Table 11: Unknown set result.

Attack stage
# Dapps/0-

day
# attacker

EOAs/0-day
# exploit

transactions/0-day
Attack

preparation
80/70 42,661/8,237 214,408/106,436

Exploitation 85/75 35,955/3,650 143,179/39,908
Attack

propagation
75/65 18,466/6,545 118,755/80,419

transaction clusters with 30,888 transactions. We found that
3,671 clusters are indeed related to attack incidents and 3,347
clusters are at the right attack stage.

Table 10 summarizes our findings. Our study reveals that
Ethereum Dapps attacks are indeed prevalent, compromising
various kinds of Dapps through different attack vectors. We
observe that 57.3% of the victim Dapps are in the category of
Gambling. To support the gambling functionality, these Dapps
need to generate random numbers, which sometimes are im-
plemented by a weak PRNG, thereby exposing the Dapps to
the bad randomness attack. Note that in our study, 82% of
the Dapps scanned by DEFIER were observed under attacks.
This might be because the Dapps we analyzed were highly
popular with large balances, which makes them more likely
to be targeted by the miscreants. Also, among the 85 victim
Dapps found in the exploit transactions, 75 (e.g., SpaceWar
and SuperCard) were never reported before.

To understand the economic impacts of these abusive ac-
tivities, we estimate the financial loss of the victim Dapp. In
particular, for each victim Dapp, we calculate its income and
cost difference of the exploit transactions. Table 12 shows
the victim Dapps with the top-5 largest losses. The total loss
inflicted by the attacks on these five Dapp is estimated to be
28,485 Ethers.

Table 11 shows the number of Dapps found in each of the at-
tack stages. Interestingly, our model identifies 214,408 attack
preparation transactions associated with 80 Dapps. We found
507 functions were tested by the adversaries. Interestingly,
311 functions were indeed exploited in the exploitation stage.
It indicates that our model can help identify the vulnerable
functions before they are exploited.

Table 8: Performance comparison in different epochs
Epoch learningrate precision recall F1

10 0.001 0.965 0.962 0.963
20 0.001 0.982 0.981 0.981
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of the sliding context window w controls the length of the
transactions used to inspect the operational context. Here
a small window size might contain inadequate information
about the operational context, while a large window may bring
in the information across different stages, which leads to noise.
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as illustrated in Figure 10(a) and 10(b), over the ground-truth
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from 0.00001 to 0.1. From the result shown in Table 8 and
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20 epochs and a learning rate of 0.0001.
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cally, we implemented four models: RNN, RNN with atten-
tion, LSTM, LSTM with attention on the groundtruth dataset
and evaluated their effectiveness using 10-fold cross valida-
tion. Similar to the LSTM model we used (Section 4.3), the
backbone of the RNN is also three layers 128 * 256 * 128 with
the batch size of 128. Table 7 shows the results. We observe
that the LSTM with attention outperforms other sequence
classification models.
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3,671 clusters are indeed related to attack incidents and 3,347
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Table 10 summarizes our findings. Our study reveals that
Ethereum Dapps attacks are indeed prevalent, compromising
various kinds of Dapps through different attack vectors. We
observe that 57.3% of the victim Dapps are in the category of
Gambling. To support the gambling functionality, these Dapps
need to generate random numbers, which sometimes are im-
plemented by a weak PRNG, thereby exposing the Dapps to
the bad randomness attack. Note that in our study, 82% of
the Dapps scanned by DEFIER were observed under attacks.
This might be because the Dapps we analyzed were highly
popular with large balances, which makes them more likely
to be targeted by the miscreants. Also, among the 85 victim
Dapps found in the exploit transactions, 75 (e.g., SpaceWar
and SuperCard) were never reported before.

To understand the economic impacts of these abusive ac-
tivities, we estimate the financial loss of the victim Dapp. In
particular, for each victim Dapp, we calculate its income and
cost difference of the exploit transactions. Table 12 shows
the victim Dapps with the top-5 largest losses. The total loss
inflicted by the attacks on these five Dapp is estimated to be
28,485 Ethers.

Table 11 shows the number of Dapps found in each of the at-
tack stages. Interestingly, our model identifies 214,408 attack
preparation transactions associated with 80 Dapps. We found
507 functions were tested by the adversaries. Interestingly,
311 functions were indeed exploited in the exploitation stage.
It indicates that our model can help identify the vulnerable
functions before they are exploited.



Summary

  The first measurement study and forensic analysis on real-world Dapp attacks.

   Our new understanding and CTI discovered can help mitigate the threat to Dapps.

  Discover 476,342 exploit transactions on 85 target (with a microprecision of 91.7%). 

  DEFIER reported 75 0-day victim Dapps. 

An attack lifecycle discovery tool can potentially be used to disrupt exploits, 
sometimes even before damages are inflicted.
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