

Evil Under the Sun: Understanding and Discovering Attacks on Ethereum Decentralized Applications

Liya Su^{1,2,3} Xinyue Shen^{1,4} XiaoFeng Wang¹

Xiangyu Du^{1,2,3} Xiaojing Liao¹ Luyi Xing¹ **Baoxu Liu**² ¹Indiana University Bloomington ²Institute of Information Engineering, Chinese Academy of Sciences, ³University of Chinese Academy of Sciences ⁴Alibaba Group

Background

- Ethereum: computer programs on the blockchain
- Externally Owned Accounts (EOAs)
- Smart Contract: deploy on Ethereum
- Dapp: public smart contract

Background

Dapp Attack

What like and how the attacks launch on real-world Dapps?

How to automatically reconstruct Dapp attacks?

How to find new attack and o-day victim Dapps?

Transaction based Forensic Analysis

(0x73*, 0x54*, execute(0xa6*), 0.1 ETH) **2** (0x54*, 0xa6*, airDropPot_(), 0 ETH) (0x54*, 0xa6*, airDropTracker_(), 0 ETH) (0x54*, 0x07*, execute(0xa6*), 0.1 ETH) **5** (0x07*, 0xf7*, create, 0.1 ETH) **6** (0xf7*, 0xa6*, buyXid(0x0000), 0.1 ETH) (0xf7*, 0xa6*, withdraw(), 0 ETH)

- (0xa6*, 0xf7*, transfer, 0.1012 ETH)
- **(**0xf7*, 0x73*, suicide, 0.1012 ETH)

Background

Example of transaction execution traces. **O**: exploit contract, \bigotimes : contract generated in execution, \bigcirc : Dapp, \diamondsuit : EOA.

Workflow of the measurement approach.

Analyzing Exploit Transactions

Attack type	# of Dapps		# of exploit contracts		# of attacker EOAs		# of attack transactions	
	D_s	D_e	D_s	D_e	D_s	D_e	D_s	D_e
Bad randomness	4	14	9	19	9	27	14	40,766
DoS	4	6	3	3	5	88	4	17,088
Integer overflow/underflow	13	32	1	2	28	53	47	591
Reentrancy	2	2	2	3	2	4	2	30
Improper authentication	12	18	6	18	17	60	34	575
Unique total	25	56	20	45	48	227	77	58,555

Analyzing Exploit Transactions

Data Collection and Derivation

Table 2: Known Dapp attacks. D_s is the set of data collected from the reports, and D_e includes those derived.

Example of Dapp criminal footprints.

Preparation: Testing contracts or transferring fund

Testing transaction in preparation stage.

Analyzing Exploit Transactions

Exploitation: The adversary tends to rapidly evolve his strategies

Exploit contract evolution at the exploitation stage.

Analyzing Exploit Transactions

Figure 6: Sequence representation.

Transaction clustering

$$D(g_1, g_2) = \alpha \min_{(o_1, \dots, o_k) \in \mathcal{O}(g_1)}$$

Preprocessing

\circ **Sequence-based Classification**

EOA-Dapp-execution attention model: highlight the useful information related to the EOA's intent on the Dapp.

Output types: normal, preparation, exploitation, propagation and completion.

Table 6: Dataset and evaluation results.

Dataset	# transactions	Results
Groundtruth set	badset 57,855	premicro 98.2%, premacro 92.4%
	goodset 39,124	<i>rec_{micro}</i> 98.1%, <i>rec_{macro}</i> 98.4%
Unknown set	2,350,779	<i>positive</i> 476,334
Sampled testset	30 888	pre _{micro} 91.7%
	50,000	premacro 83.6%

rec_{micro} and *rec_{macro}*: micro of recall, macro of recall *positive*: transactions that labeled as one of attack stages

Discussing the Result

- premicro and premacro: micro of precision, macro of precision

Table 10: Victim Dapps in different categories.

Type	# Dapps/0- day	# attacker EOAs/0-day	# exploit transactions/0- day	ex. of victim Dapps		Table 11: U	nknown set resul	lt.
Gam- bling	51/43	65,778 /11,339	360,524 /114,473	Lucky Blocks	Attack stage	# Dapps/0- day	# attacker EOAs/0-day	# explo
Game	28/27	959/919	52,673 /52,176	SpaceWar	Attack preparation	80/70	42,661/8,237	214,408/10
Finance	5/5	183/183	59,872 /59,872	STOX	Exploitation Attack	85/75	35,955/3,650	143,179/3
Token	2/1	279/167	4,478/472	Power of Bubble	propagation	75/65	18,466/6,545	118,755/8
Total	85/75	67,199 /12,608	476,342 /226,763					

Discussing the Result

Q Our new understanding and CTI discovered can help mitigate the threat to Dapps.

Discover **476,342 exploit transactions** on **85 target** (with a microprecision of 91.7%).

✓ DEFIER reported **75 o-day victim Dapps**.

An attack lifecycle discovery tool can potentially be used to disrupt exploits, sometimes even before damages are inflicted.

Authors:

Liya Su, Xinyue Shen, Xiangyu Du, Xiaojing Liao XiaoFeng Wang, Luyi Xing, Baoxu Liu

Contact:

Availability:

The annotated data and the implementation of DEFIER is available at https://drive.google.com/drive/folders /1cdD1gHNbWIS228QXmeUReougSL_k1kvf? <u>usp=sharing</u>.

suliya@iie.ac.cn