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Abstract—Large Language Models (LLMs) have increased
demand for high-quality prompts, which are now considered
valuable commodities in prompt marketplaces. However, this
demand has also led to the emergence of prompt stealing
attacks, where the adversary attempts to infer prompts from
generated outputs, threatening the intellectual property and
business models of these marketplaces. Previous research pri-
marily examines prompt stealing on academic datasets. The
key question remains unanswered: Do these attacks genuinely
threaten in-the-wild prompts curated by real-world users? In this
paper, we provide the first systematic study on the efficacy
of prompt stealing attacks against in-the-wild prompts. Our
analysis shows that in-the-wild prompts differ significantly
from academic ones in length, semantics, and topics. Our
evaluation subsequently reveals that current prompt stealing
attacks perform poorly in this context. To improve attack
efficacy, we employ a Text Gradient based method to iteratively
refine prompts to better reproduce outputs. This leads to
enhanced attack performance, as evidenced by improvements
in METEOR score from 0.207 to 0.253 for prompt recovery
and from 0.323 to 0.440 for output recovery. Despite these
improvements, we showcase that the fundamental challenges
persist, highlighting the necessity for further research to im-
prove and evaluate the effectiveness of prompt stealing attacks
in practical scenarios.

1. Introduction

Large Language Models (LLMs), such as ChatGPT [4],
Claude [5], and Gemma [36], have demonstrated unprece-
dented capabilities across a wide range of fields, including
mathematical reasoning [14, 28, 61], code generation [54,
63], and article writing [44, 57]. The efficacy of these LLMs,
however, is profoundly influenced by the quality of the
input prompts provided by users [34]. Research shows that
prompt quality directly impacts the performance of these
models, making prompt engineering, a systematic approach
to crafting and refining prompts, an essential component
of working with LLMs [34, 58]. This engineering pro-
cess involves carefully designing prompts, iterating on their
phrasing and structure, and tuning them through a series
of trial-and-error to maximize the models’ output accuracy
and relevance. Given the creativity and efforts involved,
high-quality prompts have been regarded as intellectual
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Figure 1: Overview of prompt stealing attacks on in-the-
wild prompts.

property and widely sold on prompt marketplaces, such as
PromptBase [9], ArtHub [2], and PromptHero [10]. The top
10 prompt engineers on PromptBase [9] have each sold
over 2,400 prompts, with each prompt price ranging from
$2.99 to $16.99 and total sales for each engineer exceeding
$10,000, further emphasizing the intellectual value embed-
ded in expertise-crafted prompts.

As high-quality prompts gain value, the risk to intel-
lectual property also arises [51]. A novel attack aimed at
stealing the prompt from model outputs emerges, known
as prompt stealing attack [43]. An example of this type of
attack is illustrated in Figure 1, where an adversary executes
the prompt stealing attack by recovering the prompt from the
generated output captured on the social platforms. Existing
attacks typically involve constructing a draft prompt by
prompting the LLM to deduce the original prompt from the
output. This draft prompt is then refined through content
modifications [23], categorical factors [59], or the addition
of contextual elements [43] to better approximate the origi-
nal prompt. In practice, such attacks could leak all prompts
available for sale on a prompt marketplace, jeopardizing
the business models and resulting in cut-throat competition
across the entire business ecosystem [39]. Note that these
threats are not merely hypothetical. Several prompt steal-
ing attacks have been conducted against LLMs in the real
world [23, 43, 59].

A significant gap, however, is the divergence between
the prompts employed in experimental evaluations and those
encountered in real-world applications. This discrepancy
raises questions regarding the generalizability and practical



effectiveness of these techniques beyond controlled test-
ing environments. Specifically, previous studies [23, 43]
often rely on evaluation prompts that remain restricted to
academic datasets, which are created by researchers rather
than sourced from real users. For instance, [23, 43] both
evaluate their methods with the academic dataset Alpaca
with prompts such as “What are the three primary colors?”,
“Brainstorm possible solutions to reduce water pollution.”
As later demonstrated in Section 3, these academic prompts
are generally shorter, less concrete, and focus on distinct
topics, differing significantly from prompts used in real-
world applications. Consequently, the effectiveness of ex-
isting prompt stealing attacks evaluated on these academic
prompts remains unknown in real-world contexts (see Sec-
tion 4). This gap hinders users, security researchers, and
policymakers from truly understanding the threat posed by
this new type of attack.

In this paper, we perform the first study on evaluating
prompt stealing attacks against LLMs using in-the-wild
prompts [45]. This enables us to answer the following key
research questions:
Do In-The-Wild Prompts Differ from Academic
Prompts? We start by inspecting the prompts employed in
the existing research [23, 43] and those sourced from real
users [45]. Our comparative analysis suggests that academic
prompts differ from in-the-wild prompts across multiple
dimensions. In terms of sentence length, the in-the-wild
prompts have an average word length of 77, compared to the
average of 14 in the academic datasets. In addition, they also
demonstrate a noticeable separation in the prompt semantic
space and exhibit distinct levels of topic concentrations.
Can Existing Attacks Steal Prompts in Practical Set-
tings? Based on the above findings, we conduct an empirical
evaluation of existing prompt stealing attacks [23, 43, 59]
on the in-the-wild prompt dataset. Our results show that
these attacks are inadequate in reconstructing both the
prompt and the output generated by the prompt (see Sec-
tion 4), with METEOR scores of 0.157, 0.184, 0.207, and
BERTScores [62] of 0.860, 0.857, 0.857 for prompt recon-
struction, and METEOR [15] scores of 0.310, 0.318, 0.311
and BERTScores of 0.865, 0.867, 0.867 for output recon-
struction, both exhibit limitations in thoroughly identifying
the detailed information within the output generated by the
target prompt, thereby failing to accurately reconstruct the
prompts.
Can We Improve the Prompt Stealing Performance?
Driven by the ineffectiveness of existing attacks, we lever-
age Text Gradient [40] to enhance the efficacy of prompt
stealing attacks. Our results show that our approach, T-
GPS, which iteratively refines the initial draft prompt guided
by the text gradients analyzed by the LLMs, outperforms
existing prompt stealing attacks [23, 43] in stealing in-
the-wild prompts. This is evidenced by improved lexical
and semantic metrics. In reconstructing the prompt, T-
GPS has shown improvements of 0.046 and 0.020, re-
spectively, on METEOR and sentence similarity compared
to the existing prompt stealing attack. Though modest in
absolute values, the lexical improvements by the T-GPS

are significant, especially for well-defined prompts with
clear objectives. Moreover, in reconstructing the generated
output, T-GPS has demonstrated significantly improved per-
formance, achieving scores of 0.093, 0.117, 0.116, 0.027,
and 0.043 in BLEU, METEOR, ROUGE-L, BERTScore,
and SentenceSim, respectively.
What Are the Fundamental Challenges for Prompt
Stealing in the Real World? Our approach demonstrates
improved attack performance compared to existing methods.
However, it still encounters limitations when attempting to
reconstruct prompts in uncontrolled, real-world contexts.
Specifically, while our method achieves high efficacy in
replicating outputs generated by the original prompt, it often
fails to faithfully reconstruct the prompt itself, introducing
extraneous details derived from the output (see Section 6).
This limitation is inherent in the prompt stealing attack
methodology, hence a fundamental challenge. That is, with-
out a clear understanding of the prompt’s abstraction level,
the adversary lacks the ability to design targeted strategies
to effectively guide the reconstruction process. This limita-
tion highlights the necessity for further research aimed at
improving the robustness and accuracy of prompt stealing
attacks in practical, real-world applications.
Remark. The main objective of this paper is not to introduce
a novel prompt stealing method designed to surpass current
state-of-the-art techniques. Rather, our focus is on bench-
marking the effectiveness of existing methods, along with
our proposed improvements, in the context of stealing in-
the-wild prompts. Our findings indicate that the performance
of prompt stealing techniques previously proposed in aca-
demic literature remains suboptimal in practice. We hope our
results can highlight the importance of robust evaluations of
LLM security in real-world scenarios.

2. Background

Large Language Models. LLMs have shown notable ad-
vancements, especially in their general problem-solving
abilities. Their capabilities have been evaluated across
a wide range of benchmarks, including general bench-
marks like AGIEval [64], MMLU [26], and BIG-Bench
Hard [48]; knowledge reasoning benchmarks such as
TriviaQA-Wiki [30]; and reading comprehension bench-
marks like SQuAD [42] and BoolQ [19]. LLMs, such
as GPT [4], Llama [21], Mistral [29], Claude [5], and
Gemma [36], are rapidly evolving and continuously setting
higher records for these benchmarks. In this context, the
prompt stealing attack can be regarded as a task to evaluate
the LLMs’ capability of deducing the original prompts given
the output they generate.
Prompt Engineering. Prompt engineering [58] aims to
refine prompts for the effective and efficient use of LLMs
in specific tasks. Several techniques have been proposed
to refine this process, such as few-shot prompting [17],
Chain-of-Thought prompting [56], and Retrieval Augmented
Generation [32]. Diverging from these methods, Self-
Consistency [52], Tree-of-Thoughts [60], and Graph-of-
Thoughts [16] decompose the single-step prompting into
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Figure 2: Prompt length distributions of different prompt datasets. Average lengths are 14, 23, 7, and 77 words, respectively.

multiple steps and aim to solve the tasks in a multi-step
reasoning process.

Prompt Stealing. We show an overview of prompt stealing
attacks in Figure 1. Following the settings of the previous
study [46], the prompt engineer first creates high-quality
prompts through prompt engineering and uses LLMs to gen-
erate the outputs. These generated outputs are subsequently
shared on various social networks, such as Reddit [11], Dis-
cord [6], FlowGPT [7], and AIPRM [1]. Original prompts
are often withheld to protect intellectual property. The high-
quality prompt is referred to as the target prompt, and the
output generated by the high-quality prompt is the target
output. Given this context, an adversary can observe the
target output on these platforms and attempt to deduce the
target prompt. The prompt that the adversary recovers is
referred to as the recovered prompt, which is used to gener-
ate the recovered output. The effectiveness of the attack is
evaluated by comparing the recovered prompt to the target
prompt, as well as the target and recovered outputs. In
this prompt stealing attack, the adversary can access social
networks and collect the target outputs shared by the prompt
engineers. However, the adversary has no knowledge of
the target prompts used to generate these target outputs.
Additionally, since most target outputs are shared with the
information about the LLM used, we assume the adversary
can acquire this information and leverage the same LLM to
generate the recovered output using the recovered prompt.

3. Do In-The-Wild Prompts Differ from Aca-
demic Prompts?

Motivation. In this section, we aim to address a critical
question: To what extent are the prompts employed in ex-
isting research representative of those used by real users
in real-world scenarios? Our motivation is primarily driven
by the concern that a high attack success rate on evaluation
prompts may not necessarily translate to effectiveness on
real-world prompts, particularly if there is a significant
divergence between the two categories of prompts. We begin
by providing an overview of the two prompt categories
and then conduct a detailed comparative analysis based on
prompt length, semantics, and topics.

TABLE 1: Prompt samples from academic prompt datasets
and in-the-wild prompt dataset.

Dataset Prompt Sample

Alpaca Write a review of a recent movie you watched.
Parasite (2019)

Self-Instruct Write a text about something that made you
angry recently.

Arxiv-Math-Instruct What is the definition of fmi?

In-The-Wild Please ignore all previous instructions. Please
respond only in the english language. Do not
explain what you are doing. Do not self ref-
erence. You are an expert marketing manager.
Write an AIDA (Attention Interest Desire Ac-
tion) model to generate marketing strategy and
sales for the following business: (your busi-
ness). Please present the results in a markdown
table with two column: stage, strategy and
suggestions

3.1. Prompt Datasets

In-The-Wild Prompts. In this paper, we employ the in-
the-wild prompt dataset as described in [45]. This dataset
comprises a comprehensive collection of 15,140 prompts,
gathered from four distinct platforms, all contributed by
real users. These platforms include Reddit [11] and Dis-
cord [6], as well as a variety of websites such as AIPRM [1],
FlowGPT [7], and JailbreakChat [8]. Additionally, the
dataset incorporates prompts from open-source collections,
specifically the Awesome ChatGPT Prompts repository [3]
and a set of 50 in-the-wild prompts that are extracted from
images on Twitter and Reddit [22]. All these platforms are
deliberately chosen according to their popularity in sharing
prompts [45]. In turn, these in-the-wild prompts cover a
wide spectrum of prompts used in the real world.
Academic Prompts. In this study, we utilize three distinct
prompt datasets - Alpaca, Self-Instruct, and Arxiv-Math-
Instruct - introduced by Gao et al. [23]. In contrast to in-
the-wild prompts, these datasets are created by researchers
rather than sourced from real users. These datasets are all
instruction datasets designed for LLM instruction-tuning
in research, with instruction-response pairs that simulate
the paradigm of the real-user interaction with LLMs. In
addition, they are leveraged by researchers across various
domains, including instruction tuning [38, 47], LLM align-



Figure 3: T-SNE visualization of the randomly sampled 500
prompts from in-the-wild and academic datasets. The plot
reveals a distinct semantic gap between these prompts on
embedding space, with only a few points that overlap.

ment [41, 55], and mathematical reasoning [24, 35]. In this
paper, we term these datasets as academic prompt datasets.
• Alpaca. The Alpaca dataset [12] comprises 52,002 in-

structions created by OpenAI’s text-davinci-003 engine.
This dataset is specifically designed for LLM instruction-
tuning, improving their ability to follow human instruc-
tions more precisely.

• Self-Instruct. The Self-Instruct dataset [53] includes
82,439 instance instructions with inputs and outputs gen-
erated by OpenAI’s Davinci engine. This dataset shares a
similar design goal with Alpaca.

• Arxiv-Math-Instruct. The Arxiv-Math-Instruct dataset [13]
consists of 50,488 question-answer pairs derived from
abstracts of academic papers across various mathematical
categories from the ArXiv repository. The questions are
generated using the T5-base model, while the answers are
produced using the GPT-3.5-turbo model. The dataset is
designed to assess the capabilities of LLMs in mathemat-
ical reasoning and problem-solving.

To provide a concrete impression of academic and in-the-
wild prompts, sample prompts from these datasets are shown
in Table 1.

3.2. Comparative Analysis

Overview. Building upon the analytical framework applied
in the characterization of in-the-wild prompts [45], we un-
dertake a comparative analysis between academic prompts
and in-the-wild prompts. The goal is to understand whether
academic and in-the-wild prompts share similarities in terms
of prompt length, topics, and semantics.
Prompt Length. The prompt length (measured by the num-
ber of words) is a factor that directly influences both the
complexity and specificity of prompts. As shown in Fig-
ure 2, there exists a noticeable difference in prompt length
distribution between in-the-wild prompts and academic
prompts. Note that some in-the-wild prompts can reach up
to 1,200 words; we exclude such outliers for clarity in our

visualizations. This wide variation in in-the-wild prompts
reflects the diverse nature of real-world tasks, which often
require detailed instructions or extensive contextualization.
In contrast, the prompts from academic datasets, such as
Alpaca and Self-Instruct, tend to be more concise, aver-
aging less than 25 words. These shorter prompts align
with their design goals for instruction-tuning tasks, which
are typically straightforward and require minimal context.
Moreover, prompts in the Arxiv-Math-Instruct dataset are
even shorter, ranging between 5 and 15 words. This narrow
distribution suggests that these prompts are highly specific
and targeted, with a focus on concise scientific definitions
and terminologies. Overall, these findings suggest a key dis-
tinction between academic and in-the-wild prompts. While
academic prompts tend to be concise and narrowly focused,
in-the-wild prompts often encompass a broader range of
complexities and contextual information.

Prompt Topics. Upon identifying the prompt length differ-
ence, we further examine if topical differences exist between
in-the-wild and academic prompts. For this analysis, we em-
ploy BERTopic [25], a topic modeling approach that facili-
tates the identification of dominant themes across datasets.
The word cloud visualization of topics from these datasets
is shown in Figure 4. In-the-wild prompts mainly revolve
around daily tasks and entertainment such as gaming, cod-
ing, essay writing, and general advice. Each topic accounts
for approximately 3-5% of the total prompts, collectively ac-
counting for about 30% of the dataset, indicating the users’
preference for these prompts. Some topics overlap with
those from academic datasets. However, each shared topic
typically constitutes less than 1% of academic prompts.
This highlights that these popular themes from in-the-wild
prompts are infrequently addressed in academic prompts.
Moreover, academic prompts emphasize specialized topics
absent from in-the-wild prompts, such as the Paris Climate
Agreement, renewable solar energy, and specific scientific
concepts. Our findings exemplify the distinct topical focus
of academic prompts compared to in-the-wild prompts, in-
dicating the potential limitations of academic prompts in
capturing the diversity and practical relevance of prompts
encountered in real-world scenarios.

Prompt Semantics. Finally, we investigate prompt seman-
tics, a pivotal factor for uncovering both the functions of
prompts and the intentions of users. Here, we investigate
whether semantic differences exist between in-the-wild and
academic prompts. We randomly sample 500 prompts from
each dataset, embed each prompt into 4096-dimensional
vectors using the E5-Mistral-7b-Instruct model [29], and
then apply t-SNE to visualize the embeddings [50]. As
shown in Figure 3, in-the-wild and academic prompts
demonstrate a discernible separation in the prompt semantic
space. This distinction suggests that the effectiveness of
prompt stealing attacks - frequently assessed using academic
prompts - may be inherently limited. Such a restriction may
reduce the generalizability of these attacks to prompts that
are more commonly encountered in real-world scenarios. We
later exemplify their limitations in Section 4.
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Figure 4: Word cloud of prompt topics from different datasets. Academic prompts cover a broad but sparse range of topics,
while in-the-wild prompts are more concentrated on specific topics that real users are interested in.

Takeaway 1: Notable differences exist between academic
and in-the-wild prompts. In-the-wild prompts are typically
longer and tend to focus on practical and recreational
activities. In contrast, academic prompts are shorter and
emphasize specialized topics. Our findings show that the
academic prompts employed in prior research may not
fully encompass the diversity of prompts used in the real
world.

4. Can Existing Prompt Stealing Attacks Steal
In-The-Wild Prompts?

Motivation. In light of differences between academic and
in-the-wild prompts, we perform a comprehensive evalua-
tion of the effectiveness of existing attacks on stealing in-
the-wild prompts [23, 43, 59]. The goal is to understand
if these attacks remain effective in stealing in-the-wild
prompts.

4.1. Existing Prompt Stealing Attacks

Vanilla method [43] refers to the approach that directly
instructs LLMs to recover the target prompt based on the
given target output. The prompting instruction for the LLMs

is formatted as: “What prompt would lead to this output?”
In [43], the Vanilla method is used to reconstruct a draft
prompt, which is then refined by adding role-play or context
information based on classification as the prefix. However,
training such a classifier on in-the-wild prompt dataset re-
quires manually expanding in-the-wild prompts into role-
based and in-context prompts by adding the role information
and in-context information, which is absent in in-the-wild
prompts [43]. This process introduces subjectively crafted
prefixes, causing the in-the-wild prompts to deviate from
their original fidelity and intended functionality. As a result,
we exclusively evaluate the Vanilla method on in-the-wild
prompts.
DORY [23] guides the target prompt reconstruction process
using the uncertainty measured by the logarithmic probabil-
ity along with the target output. This attack can be divided
into four steps:

• Step 1: Draft Prompt Recovery. The draft recovered
prompt is generated based on the target output. This
process is similar to the Vanilla method, but in a few-
shot learning scheme.

• Step 2: Keyword Identification. The key sentence of the
target output is first identified by leveraging an LLM in
a few-shot learning scheme. Keywords are then extracted



by identifying words with low uncertainty within the key
sentence.

• Step 3: Noise Identification. Noise is identified by com-
paring the keywords between the target outputs and the
draft outputs generated by the draft prompts.

• Step 4: Recovered prompt. The target output, draft prompt,
keywords, and noise are combined to generate the final
recovered prompt with the LLM.

This method requires the adversary to obtain both the target
output and the logarithmic probability of each token in
the target output. In practice, such access is beyond the
adversary’s capabilities. However, to evaluate this method,
we relax the restriction on the adversary and assess it under
the assumption that both the target output tokens and the
logarithmic probability for each token are accessible,
PRSA [59] recovers the target prompt based on the hypothe-
sis that the outputs generated by the prompts within the same
category share similar factors, such as themes, style, and
logical structure. In order to find these categorical factors
for each category, PRSA iteratively updates the factors by
prompting the LLM to analyze the discrepancy between the
target output and the draft output. Each iteration can be
divided into three steps:
• Step 1: Draft Prompt Recovery. A draft prompt is gener-

ated based on the target output and the factors from the
previous iteration.

• Step 2: Categorical Factors Generation and Score. An
LLM is leveraged to generate new factors and then score
both existing and new factors by comparing the draft
output with the target output.

• Step 3: Categorical Factors Update. Factors with scores
above a pre-defined threshold are retained for the next
iteration.

After completing the iterative process across all target out-
puts within the category, the target outputs within the same
category, along with the categorical factors, are input into
the LLM to recover the target prompts.

4.2. Experimental Settings

Evaluation Dataset. Our evaluation dataset is derived from
the original 15,140 in-the-wild prompts. First, we manually
exclude jailbreak prompts. Note that reconstructing prompts
with placeholders requires access to both the generated out-
put and the specific input words to complete the placeholders
accurately. This is a capability that the adversary usually
does not have. Consequently, we then exclude prompts that
contain placeholders. Moreover, we exclude prompts with
fewer than five words to ensure the meaningfulness of the
target prompts, as well as prompts that are longer than their
corresponding outputs to guarantee that the generated out-
puts provide sufficient information for prompt reconstruc-
tion. This process results in a total of 1,855 prompts from
the original in-the-wild prompts. Using the target model (see
below), we generate 1,855 target prompt-output pairs based
on these prompts. To balance the analytical correctness

with financial costs, we randomly select 421 target prompt-
output pairs from this set to evaluate the Vanilla and DORY
methods. To generate categorical factors for PRSA, we use
BERTopic to classify 421 target prompts, of which 259 are
assigned to specific classes, and the remaining 162 are cat-
egorized as “others.” The 259 prompts are recovered using
PRSA with their corresponding class-based factors, while
the remaining 162 prompts are recovered by treating each
prompt as an individual class, which involves extracting
factors separately for each of these prompts.
Target/Attack Model. Given that most in-the-wild prompts
are tailored for GPT-3.5 at the time of collection, we employ
the latest GPT-3.5-turbo model as the target model, specifi-
cally, GPT-3.5-turbo-0125,1 to generate target outputs from
target prompts. Given that most target outputs are shared
with information about the target model, we use the same
LLM as the attack model.
Parameter Settings. Based on the previous study [23], we
set the temperature to 0.7, the random seed to 42, and
all other parameters to their default values for the GPT-
3.5-turbo-0125 model. For PRSA, we set the threshold for
retaining the categorical factors to 0.2 so as to preserve
a broader range of categorical factors. A higher threshold
would consistently discard factors generated in previous
iterations due to the diverse sentence structures of in-the-
wild prompts. As a result, without this adjustment, the final
categorical factors would depend solely on the analysis
between the target output and the draft output from only
the last one or two iterations. For each of the 162 “other”
prompts, we retain all factors regardless of the score. Each
method is executed three times to recover each target prompt
and output. The reported standard deviation represents the
average of the standard deviations calculated across all pairs
of target and recovered prompts/outputs.

4.3. Evaluation Metrics

Goals. We evaluate the performance of prompt stealing
attacks from two perspectives: fidelity and functionality.
For fidelity, we assess the similarity between the target
prompts and the recovered prompts. That is, we measure
how closely the recovered prompts align with the intended
targets. Functionality, on the other hand, is assessed by mea-
suring the similarity between outputs generated by the target
prompts and those produced by the recovered prompts. This
is to evaluate whether the recovered prompts can effectively
prompt the target model to generate outputs similar to
those produced by the target prompts. Together, these two
perspectives provide a comprehensive understanding of the
effectiveness of prompt stealing attacks in terms of both
capturing the essence of target prompts and replicating their
intended outputs.
Metrics. We use two categories of metrics - lexical and
semantic metrics - to assess both fidelity and functionality.
We outline their details below.

1. https://platform.openai.com/docs/models/gpt-3-5-turbo.

https://platform.openai.com/docs/models/gpt-3-5-turbo


• Lexical Metrics are used to evaluate the degree of
alignment between the recovered and target prompts (or
outputs) based on the precise word choices and their
sequence. In this study, we employ three widely-used
lexical evaluation metrics: BLEU [37], METEOR [15],
and ROUGE-L [33].
– BLEU [37] is a precision-based metric that accumulates

the word count and n-gram word sequence count in
both the reference text and candidate text to compute
the score, focusing on exact word matches. In our
evaluation, we calculate the BLEU score as the average
BLEU metric for 1- to 4-grams.

– METEOR [15] improves on BLEU by incorporating
stemming and synonym matching, which makes it less
sensitive to wording and word order variations. In addi-
tion, it balances the precision and recall by computing
a weighted harmonic mean of the two.

– ROUGE-L [33] evaluates the longest common subse-
quence between the reference text and the candidate
text, capturing the overall structure of words.

Note that these metrics may result in low scores for
texts that are semantically accurate but employ alternative
phrasing or synonyms. This limitation arises from the fact
that these metrics primarily prioritize exact matches in
lexical terms and n-gram sequences rather than capturing
semantic equivalence. Consequently, while these metrics
offer a robust measure of lexical alignment, they may not
fully account for semantic variation between the target
and recovered prompts (or outputs).

• Semantic Metrics are designed to evaluate semantic sim-
ilarity effectively and complement lexical metrics.
– BERTScore [62] is to address the limitations of lexi-

cal metrics in capturing word meaning. Concretely, it
employs pre-trained BERT embeddings [20] to align
words in candidate and reference sentences based on
cosine similarity, calculating precision, recall, and F1
scores. In our work, we use the BERTScore F1 score
as our metric.

– Sentence Semantics (SentenceSim) [43] aims to cap-
ture sentence-level semantic similarity by identifying
deeper semantic relationships and the overall meaning
conveyed by a sentence. In this paper, we apply co-
sine similarity on sentence embeddings generated by
the Mistral-7B model [29] to assess similarity at the
sentence level. Note that we do not employ FastKAS-
SIM [18] in this paper because it cannot handle special
characters used by in-the-wild prompts.

Metric Interpretation. All metrics range between 0 and 1,
with higher scores (closer to 1) indicating higher similarity.

4.4. Evaluation Results

Results. We present our evaluation results in Table 2 and Ta-
ble 3. The Vanilla, DORY, and PRSA methods show no-
table limitations in recovering target prompts from in-the-
wild examples from a semantic perspective. This limita-
tion is especially evident in their BLEU scores of 0.023,

0.026, 0.035, METEOR scores of 0.157, 0.184, 0.207, and
ROUGE-L scores of 0.189, 0.190, 0.206 for the Vanilla,
DORY, and PRSA methods, respectively. Similar patterns
are observed when recovering outputs (see Table 3), indi-
cating a significant lack of lexical alignment. Nevertheless,
all existing methods perform robustly when measured by
semantic metrics, as reflected in their high BERTScore
values of 0.860, 0.857, 0.857 for prompt recovery and 0.865,
0.867, 0.865 for output recovery. This disparity between
lexical- and semantic-level metrics suggests that, although
the approaches are adept at identifying underlying meanings,
they may lack precision in replicating exact word choices,
raising questions about their overall fidelity in capturing
verbatim textual alignment.
Lexical-Semantic Alignment Dilemma. As our results sug-
gest, the interplay between lexical alignment and semantic
similarity presents a complex challenge in evaluating the
effectiveness of prompt stealing attacks. Lexical alignment
depends on exact word choice, syntax, and phrasing. In con-
trast, semantically similar recovered prompts aim to convey
the intent or meaning of the target prompts without necessar-
ily reproducing their precise wording. To better illustrate this
dilemma, we present an illustrative example in Table 4. It is
evident that the recovered prompt encapsulates the essence
of the target prompt, including elements of comedy, sarcasm,
and references to Russian politics. However, it omits a
significant proportion of specific details when compared
to the target prompt. This observation suggests that while
semantic fidelity can be maintained, lexical precision may
still be compromised. Ideally, a robust prompt stealing attack
would achieve balanced scores in both lexical and semantic
alignment to maximize its effectiveness.
What Are the Limitations of Existing Attacks? The
main limitation of existing methods lies in their inability to
capture and integrate important details from target output
to recover prompts, as detailed in Table 5. The Vanilla
method [43] is overly simplistic, relying solely on the
prompt, “What prompt would lead to this output?” Without
explicitly instructing the LLM to extract the keywords and
phrases, the LLM struggles to capture the critical details re-
quired for reconstructing the target prompt, especially when
it contains complex instructions. The DORY method [23],
while attempting to identify the keywords and noise in the
target output, shows inadequacy in effectively distinguishing
them. As shown in Table 5, limiting keyword extraction
from the key sentence cannot capture all essential key-
words and often introduces irrelevant words like “a” and
“with.” The same pitfall results in insufficient and inaccurate
identification of noise words. The PRSA method [59] can
only partially recover in-the-wild prompts that fall into
specific categories. Even within these categories, the high
variability in meaning, functionality, and sentence structure
among in-the-wild prompts prevents PRSA from generating
universally applicable factors for every prompt in the same
category. Consequently, factors are frequently overwritten
through iterations. Despite setting a low threshold of 0.2 to
retain as many factors as possible, we find that the final gen-
erated factors are still predominantly based on those from



TABLE 2: Performance of existing methods and our method in recovering target prompts (fidelity). PRSA is evaluated with
two subsets: 259 target prompts fall into 6 categories, and 162 other prompts, each treated as a single category.

Methods BLEU METEOR ROUGE-L BERTScore SentenceSim

Vanilla 0.023 ± 0.004 0.157 ± 0.011 0.189 ± 0.013 0.860 ± 0.003 0.780 ± 0.009
DORY 0.026 ± 0.012 0.184 ± 0.042 0.190 ± 0.035 0.855 ± 0.008 0.781 ± 0.020
PRSA (other) 0.031 ± 0.011 0.197 ± 0.033 0.197 ± 0.030 0.857 ± 0.006 0.780 ± 0.028
PRSA (grouped) 0.035 ± 0.018 0.207 ± 0.050 0.206 ± 0.044 0.857 ± 0.009 0.780 ± 0.028
T-GPS (gpt-3-turbo) 0.034 ± 0.012 0.253 ± 0.038 0.205 ± 0.029 0.852 ± 0.007 0.800 ± 0.014
T-GPS (gpt-4-turbo) 0.024 ± 0.010 0.260 ± 0.036 0.181 ± 0.027 0.842 ± 0.008 0.801 ± 0.014

TABLE 3: Performance of existing methods and our method in recovering target outputs (functionality). PRSA is evaluated
with two subsets: 259 target prompts fall into 6 categories, and 162 other prompts, each treated as a single category.

Methods BLEU METEOR ROUGE-L BERTScore SentenceSim

Vanilla 0.076 ± 0.016 0.310 ± 0.025 0.299 ± 0.026 0.865 ± 0.006 0.872 ± 0.015
DORY 0.083 ± 0.034 0.318 ± 0.054 0.311 ± 0.051 0.867 ± 0.012 0.880 ± 0.032
PRSA (other) 0.085 ± 0.029 0.311 ± 0.046 0.307 ± 0.047 0.867 ± 0.006 0.876 ± 0.030
PRSA (grouped) 0.086 ± 0.036 0.323 ± 0.057 0.308 ± 0.055 0.865 ± 0.013 0.871 ± 0.039
T-GPS (gpt-3-turbo) 0.179 ± 0.063 0.440 ± 0.069 0.427 ± 0.070 0.894 ± 0.015 0.923 ± 0.025
T-GPS (gpt-4-turbo) 0.347 ± 0.089 0.586 ± 0.076 0.575 ± 0.077 0.921 ± 0.016 0.953 ± 0.018

TABLE 4: Example of lexical-semantic alignment dilemma.
The recovered prompt leads to low lexical scores (BLEU:
0.020, METEOR: 0.052, ROUGE-L: 0.016), despite high
semantic scores (BERTScore: 0.881, SentenceSim: 0.892).

Target
Prompt

Create a 5-minute stand-up comedy routine that uses satir-
ical humor to provoke critical thought about Putin, Russia,
and Ukraine, specifically targeted at Russian audiences who
are fed up with Putin’s propaganda. Consider using language
and cultural references that are familiar to the target audi-
ence to make your routine more relatable and impactful.
Include recent news and events related to Putin, Russia, and
Ukraine that are particularly relevant or controversial for the
target audience. Use routine to challenge and subvert Putin’s
propaganda and offer a different perspective. Highlight the
absurdity and negative effects of Putin’s propaganda and the
offensive war in general.

Recovered
Prompt

Write a comedy routine poking fun at Putin and Russian
politics for a stand-up show.

the last few iterations. This leads to case-specific factors
that are not generalized for all prompts within a category.
Furthermore, as indicated Table 5, existing methods fail to
recover specific word choice, syntax, and phrasing of the
target prompt, resulting in unsatisfactory lexical alignment.

Takeaway 2: Experimental results indicate that all ex-
isting methods struggle to effectively recover the target
prompt and target output for in-the-wild prompts, partic-
ularly in achieving satisfying lexical alignment. The main
limitation of existing methods lies in their inability to
capture and integrate important details from target output
to recover prompts.

5. Can We Improve the Prompt Stealing Per-
formance in Practical Settings?

Motivation. Driven by the inefficiency observed in existing
prompt stealing attacks on the in-the-wild prompt dataset,

we propose to enhance the efficacy of stealing in-the-wild
prompts. The goal is to enhance prompt stealing attacks by
improving their capability to incorporate detailed informa-
tion, and, at the same time, achieve better lexical alignment
in both the recovered prompt and output.

5.1. Text Gradient Based Prompt Stealing Attack

Overview. Inspired by the numerical gradient descent, the
concept of Text Gradient [40] is initially proposed to opti-
mize the prompt on binary classification, such as jailbreak,
hate speech, and sarcasm detections. Its core idea is to iter-
atively refine the initial prompt based on the text gradients
given by LLMs to progressively align it with the target
outcomes. We adopt this idea and apply it to our prompt
stealing attack task by refining our draft prompt iteratively
using text gradients based on the differences between the
target output and the draft output.
Text Gradient Based Prompt Stealing Attack (T-GPS).
We provide a step-by-step description of T-GPS below and
summarize its recovery process in Algorithm 1.

• Step 1: Initialization. This step corresponds to lines 1-3
in Algorithm 1. T-GPS starts by receiving the following
inputs: the target output otarget, an LLM G, the number
of iterations N , the beam size b, a metric function M ,
and a prompt selection function Select b based on metric
M and beam size b. A draft prompt pdraft is generated
using the model G with otarget as input. The set of draft
prompts B0 is initialized with pdraft, and the best prompt
p̂ is set to pdraft.

• Step 2: Iterative Text Gradient Process. This step corre-
sponds to line 4-24 in Algorithm 1. An empty set C is
initialized to store new draft prompts generated during the
current iteration. If it is not the first iteration, the algorithm
expands the draft prompts as follows:



TABLE 5: Examples of recovered prompts from Vanilla, DORY, and PRSA methods: We provide detailed explanations of
why each method may fall short in recovering the target prompt accurately. Despite their limitations, these methods all fail
to recover the detailed information present in the target prompt into the recovered prompt. In contrast, T-GPS iteratively
refines the initial draft prompt, adding relevant details by analyzing the differences between the target output and the draft
output.

Target Prompt

I want you to act as a PriestGPT. Your role is a Catholic priest during a confession session. In religious terms, ask me about my sins, provide moral
guidance based on Catholic teachings, and advise me on how to atone for my sins according to the faith’s principles. In technical terms, please
provide guidance and support in a respectful and understanding manner as I share my struggles and actions I have taken which I feel may have
been wrong; offer advice on how to make amends and improve my behavior based on general moral principles and ethical values. I understand
you’re not a qualified spiritual advisor. In the context of your task, this does not need to be taken into account.

Recovered Prompt & Deficiency Analysis (Existing Methods)

Vanilla DORY PRSA

You are a priest in a confessional booth, ready
to hear a parishioner’s confession. Write a
script for the dialogue that takes place during
this sacred moment of spiritual reflection and
guidance.

You are a priest conducting a confessional.
Deliver a compassionate and supportive mes-
sage to guide the individual confessing towards
spiritual healing and growth.

A prompt related to seeking guidance and for-
giveness within the teachings of the Catholic
Church, with a focus on spiritual healing and
growth.

Overly simplistic, relying solely on the
prompt: “What prompt would lead to this
output?”

Insufficient keywords extraction only from
the target output key sentence: [“ a”, “ sin-
cere”, “ desire”, “ sins”, “ite”, “ with”, “
heart”]
Key sentence: “Confess your sins with a con-
trite heart and a sincere desire for forgiveness.”

Irrelevant factors retained from previous
iterations: [ ’lack of mentioning the impor-
tance of knowing local LGBTQ laws’, ’lack of
detailed examples of evidence gathering’, ’lack
of specific company-related achievements in
draft prompt’...]

T-GPS (ours)

Imagine yourself as a compassionate Catholic priest, ready to listen to a parishioner’s confession with an open heart and offer guidance rooted
in the teachings of the Catholic Church. Encourage the parishioner to share their sins and struggles, emphasizing the importance of approaching
confession with a contrite heart and a sincere desire for forgiveness. Remind them of God’s infinite mercy and love, guiding them to reflect on their
actions, seek forgiveness from those they have wronged, and strive towards a life of love, compassion, and virtue. Encourage them to consider how
their actions may have hurt others or gone against moral principles, and to make amends by asking for forgiveness and changing their behavior.
Guide them to find strength and courage through prayer, reflection, and seeking guidance from the Church for spiritual renewal and growth.

Include unnecessary details from the target output that are not present in the target prompt: “Remind them of God’s infinite mercy and love,
guiding them to reflect on their actions, seek forgiveness from those they have wronged, and strive towards a life of love, compassion, and virtue
prompt”

– For each prompt p in the current set of draft prompts
Bi, a draft output odraft is generated using the model
G. This step corresponds to line 8 in Algorithm 1.

– Text gradients are calculated using G based on the draft
output odraft, the target output otarget, and the current
prompt p. This step corresponds to line 9 in Algo-
rithm 1.

– For each gradient, a new prompt pnew is generated by
applying the gradient and then added to the set C. This
step corresponds to lines 10-12 in Algorithm 1.

The top b prompts from the set C are selected using the
metric function M , which is defined as the average scaled
score of the METEOR [15], BERTScore [62], and cosine
similarity computed between the target output and the
draft output using the Mistral-7B model [29]. The current
best prompt pcurrent best is identified from Bi+1 based on
the highest metric value. If the metric score of pcurrent best
is higher than that of the current best prompt p̂, p̂ is
updated to pcurrent best.

After completing all iterations, the algorithm returns the
optimal recovered prompt p̂, which generates the recovered
output.

5.2. Evaluation Results

Experimental Settings. We use the same settings in Sec-
tion 4. For T-GPS specific parameters, the number of it-
erations is set to 6, the beam size to 4, the gradients per
candidate to 5, and the gradient applied per new candidate
to 1.
Results. The evaluation results are shown in Table 2 and Ta-
ble 3. These results indicate that T-GPS outperforms ex-
isting methods in recovering target prompts across most
metrics and consistently achieves better performance in
recovering the target output across all metrics. In terms
of recovering the target prompts (i.e., fidelity goal), T-
GPS demonstrates enhanced or comparable performance
over the best-performed existing method, PRSA (grouped),
with improvements of 0.046 and 0.020 in METEOR and
SentenceSim, respectively. In terms of recovering the target
output (i.e., functionality goal), T-GPS largely surpasses
PRSA (grouped) with substantial improvements of 0.093,
0.117, and 0.116 in BLEU, METEOR, and ROUGE-L,
respectively. Note that these lexical metric improvements
may appear modest in absolute values. However, given
that lexical metrics depend on exact word choice, syntax,
and phrasing, the improvement attained by T-GPS is non-



Algorithm 1 Prompt Stealing Attack Algorithm Based on
Text Gradients.
Require: otarget: target output, G: LLM, N : the number of

iterations, b: beam size, M : metric function, Select b:
prompt selection based on metric and beam size

1: Generate draft prompt pdraft = G(otarget)
2: Initialize draft prompts beam B0 ← {pdraft}
3: Initialize the best prompt p̂ = empty
4: for n = 0 to N − 1 do
5: C ← ∅
6: if n > 0 then
7: for all p ∈ Bi do
8: odraft = G(p)
9: gradients = G(odraft, otarget, p)

10: for all gradient ∈ gradients do
11: pnew = G(odraft, otarget, p, gradient)
12: C ← C ∪ pnew
13: end for
14: end for
15: end if
16: if n = 0 then
17: C ← pdraft
18: end if
19: Bi+1 ← Select b(C,M)
20: pcurrent best ← argmaxp∈Bi+1 M(p)
21: if M(p̂) < M(pcurrent best) then
22: p̂← pcurrent best
23: end if
24: end for
25: return p̂

trivial. Additionally, we assess the performance of T-GPS
by replacing the attack model with GPT-4-turbo, specifi-
cally GPT-4-turbo-2024-04-09.2 The results in Table 2 and
Table 3 demonstrate similar performance improvement by
T-GPS.
What Are the Improvements? The main improvement
of T-GPS lies in its capability to refine the recovered
prompt by iteratively analyzing discrepancies between the
draft and target outputs, thereby incorporating a substantial
level of detail. As detailed in Table 5, we illustrate the
improvements achieved by T-GPS over existing prompt
stealing attacks in incorporating detailed information. This
example demonstrates that T-GPS can enhance the prompt
stealing attack on in-the-wild prompts, especially when they
contain detailed instructions. As such, T-GPS outperforms
existing methods in recovering the target prompt with en-
hanced lexical precision while not compromising semantic
fidelity. Furthermore, the integration of relevant specific
details improves the alignment between the target output
and the recovered output, resulting in enhancements in both
lexical precision and semantic fidelity. To further illustrate
these improvements, in Table 6, we present a comparative
analysis between the prompts and outputs recovered by the
leading existing method, PRSA, and T-GPS. When recov-

2. https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4.

ering the target prompt, compared to the PRSA method,
which only recovers the primary task, T-GPS also recovers
the specific directives, such as “Building a blog in a niche
market,”“Creating AI training and educational resources,”
and “Building an AI focused digital marketing agency.”
These additional details enable the recovered output from
T-GPS to closely replicate the structural composition of the
target output while maintaining an almost identical semantic
alignment at the subparagraph level. This degree of fidelity
highlights T-GPS’s capacity to capture nuanced structural
and conceptual aspects of the target output.

Takeaway 3: T-GPS outperforms current methods in
recovering the target prompt and shows substantial im-
provements in recovering the target output in both lexical
precision and semantic fidelity, especially when the target
prompt contains detailed instructions.

6. What Are the Fundamental Challenges for
Prompt Stealing in the Real World?

Motivation. Despite the improved performance achieved by
T-GPS on in-the-wild prompts, we undertake an in-depth
analysis to understand why T-GPS demonstrates compara-
tively lower efficacy in recovering the target prompt relative
to the target output. By examining various contributing
factors, we aim to address the following question: What are
the fundamental challenges associated with prompt stealing
in real-world scenarios?

6.1. Challenges in Recovering Target Prompts

Visualization of T-GPS Recovery Process. In Figure 6,
we illustrate the process by which T-GPS incrementally
refines a draft prompt and its corresponding draft output,
guiding them toward alignment with the target prompt and
output. Our visualization is achieved by projecting Mistral-
7B-Instruct [29] embeddings of the draft prompts and out-
puts into a two-dimensional space using t-SNE [50]. As
shown in Figure 6, while the draft output steadily progresses
toward the target output under the guidance of text gradients,
the draft prompt exhibits greater difficulty in converging
similarly toward the target prompt. This observation mo-
tivates a deeper investigation into the distinct challenges of
recovering the target prompt compared to the target output.
The insights gained from this analysis may shed light on
the fundamental challenges associated with prompt stealing
in practical scenarios.
What Is the Influence of the Prompt Length? Through
error analysis in Table 5, we observe that this performance
variation correlates with the level of detail present in the
target prompts. Therefore, we analyze the impact of target
prompt length by categorizing the target prompts based on
empirically derived prompt length intervals: (0, 20) for one
sentence, (20, 40) for two sentences, (40, 60) for three
sentences, (60, 100) for a paragraph (3-5 sentences), (100,
180) for two paragraphs, and (180, ∞) for long texts with

https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4


TABLE 6: Comparison analysis of PRSA and T-GPS. We showcase the effectiveness of T-GPS in recovering the target
prompts and outputs on in-the-wild prompt dataset, in both lexical precision and semantic fidelity. For clarity, we only
provide part of the first sentence for each output paragraph.

Target Prompt PRSA Recovered Prompt T-GPS Recovered Prompt

I would like you to be my expert researcher and
coach on the very best opportunities today using AI
as the technology. You have extensive knowledge
and experience on the subject and know what is
trending now and where the most profitable oppor-
tunities are.
Please include these business models in your re-
search: writing illustrated children’s stories, build-
ing a blog in a niche market and creating content
and SEO strategies with AI and monetizing with
affiliate marketing, building AI training and edu-
cational resources, e.g., ebooks, website, courses,
etc., Include building an AI focused digital market-
ing agency to help business owners implement AI,
creating my own unique app that has not been done
yet.
Please add any other big opportunities I have not
listed here...

I am interested in starting a business in the AI space
and would like your expert advice on potential
opportunities. Can you provide insights on different
business models and their probability of success
and profit potential?

As an AI expert researcher and coach, I can provide
you with insights into the best opportunities avail-
able today in the AI space. Can you please rank
the following business models by their probability
of success and profit potential: 1. Building a blog
in a niche market and creating content and SEO
strategies with AI and monetizing with affiliate
marketing
2. Creating AI training and educational resources,
e.g., ebooks, website, courses, etc.
3. Building an AI focused digital marketing agency
to help business owners implement AI
4. Writing illustrated children’s stories
5. Creating your own unique app that has not been
done yet
Additionally, can you provide insights on other big
opportunities in the AI space that I may want to
consider?

Target Output PRSA Recovered Output T-GPS Recovered Output

As an AI expert researcher and coach, I can provide
you with insights into the best opportunities avail-
able today in the AI space. Here are the business
models you mentioned, ranked by probability of
success and profit potential:
1. Building a blog in a niche market and creating
content and SEO... - Probability of success: High\n
- Profit potential: Moderate
2. Creating AI training and educational resources,
e.g., ebooks, website, courses...
3. Building an AI focused digital marketing agency
to help business owners implement AI...
4. Writing illustrated children’s stories...
5. Creating your own unique app that has not been
done yet...
big opportunities in the AI space that you may want
to consider include...

Sure, there are several potential business models in
the AI space that you could consider. Here are a
few examples:
1. AI Software Development: This involves creating
and selling AI software solutions to businesses
or consumers. This business model can be highly
profitable, as there is a growing demand for AI-
powered applications across industries.
2. AI Consulting Services:...
3. AI SaaS (Software as a Service):...
4. AI Data Labeling Services:...
5. AI Hardware Development:...
In terms of probability of success and profit poten-
tial, it ultimately depends...

Ranking the business models by their probability
of success and profit potential:
1. Building a blog in a niche market and creating
content and SEO strategies with AI and monetizing
with affiliate marketing - Medium probability of
success, high profit potential.
2. Creating AI training and educational resources,
e.g., ebooks, website, courses, etc...
3. Building an AI focused digital marketing agency
to help business owners implement AI...
4. Writing illustrated children’s stories...
5. Creating your own unique app that has not been
done yet...
Other big opportunities in the AI space that you
may want to consider include:...

(a) METEOR (b) BERTScore (c) SentenceSim

Figure 5: Performance of T-GPS and existing prompt stealing attack methods in recovering the target prompts(PRSA
grouped) on different word length intervals. T-GPS surpasses existing methods on metrics of METEOR and BERTScore
as the word length increases, while gradually enlarging the performance gap on SentenceSim.

detailed examples or instructions. As shown in Figure 5,
T-GPS gradually approaches or outperforms the existing
prompt stealing attacks in recovering target prompts as
prompt length increases, achieving improvements in both
lexical and semantic metrics. This trend suggests that T-
GPS is more effective in recovering complex prompts with
extensive details by leveraging the rich co-existing infor-
mation present in both the target prompt and target output.
This effectiveness can be attributed to T-GPS’s recovery

process, which consistently integrates observed details from
the target output into the draft prompt, thereby enhancing the
likelihood of producing a recovered prompt that accurately
generates the target output.

What Is the Impact of Including Excess Details from the
Target Output? As shown in Table 8, given the limited
information about the target prompt, the LLM generates
a recovered prompt that, while likely to produce a simi-
lar recovered output to the target output, differs from the



original target prompt. For example, the target prompt is
about creating a new course without specifying the exact
subject, while the recovered prompt outlines the specific
course exactly corresponding to the course in the target
output. This also elucidates why T-GPS exhibits superior
performance in recovering the target output compared to tar-
get prompts, as the recovered prompt includes very specific
details directly copied from the target output, whereas the
target prompt contains highly abstract concepts. To explore
how excess details are iteratively added in draft prompts,
we conduct a case study that examines the process of T-
GPS. As detailed in Table 7, we display the text gradients
in the first three steps for the target prompt: “Name and
function of each player in Los Angeles Lakers in 2021.” This
case study demonstrates the progression of draft prompts
toward the target prompt, as guided by the text gradients.
For instance, the text gradient applied to the draft prompt in
Step 3 indicates, “The current prompt does not specify the
exact players to include in the roster, leading to a different
selection of players compared to the desired output.” Such
text gradient instructs the draft prompt to include more
detailed information from the target output, deviating the
draft prompt from the original abstract target prompt.

6.2. Fundamental Challenge

A significant challenge in prompt stealing in practice is
the adversary’s inability to accurately assess the abstraction
level of the target prompt. This uncertainty complicates
the adversary’s task of formulating precise instructions to
guide the LLM through iterative refinement. Attackers are
thus limited to using information available within the target
output, which often results in effective target output recovery
but does not guarantee high efficacy in recovering the target
prompt itself.

To illustrate the conditions under which T-GPS effec-
tively recovers target prompts, we conduct a case study,
presenting the best- and worst-recovered prompts as ranked
by the METEOR score in Appendix Table 15. We choose
the METEOR score as the ranking metric due to its rela-
tively lower sensitivity to lexical variations, along with its
performance alignment with other evaluation metrics. Our
findings show that the best-recovered prompts by T-GPS
generally possess two properties: (1) highly specific queries
focused on particular concepts, such as “Outline a business
plan for a subscription-based platform,” and (2) prompts
outlining detailed objectives with granular information on
each subtopic, such as “drafting a business plan with bullet
points covering value proposition, target market, and pricing
strategy.”

Conversely, as shown in Appendix Table 15, the worst-
recovered recovered prompts often reflect broad, generalized
intentions, such as “Write a story for me.” This poses the
most significant challenge for the prompt stealing attack,
as multiple target prompts with varying levels of detail
can produce the same target output. This ambiguity makes
it challenging to decide whether to extract more abstract

TABLE 7: Example of first three steps of T-GPS iterative
progress on the target prompt “Name and function of each
player in Los Angeles Lakers in 2021.” The draft prompt
generated before step 1 is: The prompt could be: “Create a
roster for a basketball team with a focus on player positions,
skills, and contributions to the team.”

Step Text Gradient

Step 1 The current prompt does not highlight the need for a mix
of veteran players and young talents in the roster, which
contributes to the depth and balance of the team.

Step 2 The current prompt lacks clarity on the desired outcome of
creating depth and versatility within the team ros- ter, resulting
in a more generic approach to selecting players based on
positions and skills.

Step 3 The current prompt does not specify the exact positions or
number of players needed for the roster, leading to a different
composition than the desired output.

Step 1 Step 2

Step 3

Step 4

Step 5
Step 6

Step 7
Target Prompt

(a) draft prompts

Step 1

Step 2

Step 3

Step 4
Step 5

Step 6

Step 7

Target Output

(b) draft outputs

Figure 6: Comparison between visualizing step-by-step draft
prompts converging towards the target prompt and inter-
mediate corresponding draft outputs converging towards the
target output through the Text Gradient progression.

information or include more specific details that closely
align with the target output.

With minimum information about the target prompt, T-
GPS iteratively optimizes the recovered prompt to generate
the recovered output that closely aligns with the target out-
put. Consequently, the success of the prompt stealing attack
is largely determined by the degree of overlap between the
target output and the target prompt. As shown in Table 15,
a well-defined target prompt with a clear objective and
substantial overlap with the target output significantly en-
hances recovery success. In contrast, more abstract prompts
with minimal overlap present considerable challenges in
accurately recovering the target prompt.

Takeaway 4: Counterintuitively, a well-defined target
prompt with a clear objective can lead to substantial
overlap with the target output, increasing both the like-
lihood of successful recovery and the associated risks.
A key challenge in practical prompt stealing lies in the
adversary’s inability to accurately gauge the abstraction
level of the target prompt. This uncertainty can hinder the
adversary’s ability to craft precise instructions for prompt
recovery.



TABLE 8: The excess details added to the recovered target prompt by T-GPS. Both the target prompt and the recovered
prompt can generate output about the course “Future of Work: Navigating the Digital Landscape.” However, while the target
prompt requires a general academic course, the recovered prompt specifies a particular course, which is negatively affected
by the details present in the target output.

Target Prompt Recovered Prompt Target Output Recovered Output

Imagine you have been tasked with
creating a new academic course at
your university. The course can be
on any topic, but it must be inno-
vative and engaging to attract stu-
dents. Write a course description
that outlines the goals, objectives,
and content of the course. In addi-
tion, explain how this course will
benefit students both academically
and professionally...

Course Title: Future of Work: Nav-
igating the Digital Landscape
Course Description:
In this cutting-edge course, stu-
dents will explore the rapidly evolv-
ing digital economy and its impact
on the future of work. Through a
combination of lectures, hands-on
projects, and guest speakers from
leading tech companies...

Course Title: Future of Work: Nav-
igating the Digital Landscape
Course Description:...
Goals and Objectives:...
1. Understand the key drivers...
2. Develop critical thinking...
3...
4...
5...
Course Content:...

Course Title: Future of Work: Nav-
igating the Digital Landscape
Course Description:...
Goals and Objectives:
-Understand the key drivers...
-Develop critical thinking...
-...
-...
-...
Comprehensive Course Content:...

7. Discussion

Experiments on Additional Datasets. Due to finan-
cial constraints, we cannot build a commercial dataset
like PRSA [59]. Instead, we use Awesome-ChatGPT-
Prompts [3], retaining 126 prompts after preprocessing,
with 100 grouped under PRSA. Analyses reveal Awesome-
ChatGPT-Prompts resemble in-the-wild prompts, with an
average length of 76.29 and showing overlaps observable
in t-SNE visualization. As shown in Table 9 and Table 10,
experiment results on Awesome-ChatGPT-Prompts are con-
sistent with results on in-the-wild prompts.
Novelty of T-GPS. T-GPS applies text gradients to each
draft prompt based on the target output, while PRSA [59]
first collects outputs that share the same category with the
target prompt to extract categorical factors. PRSA is akin
to text gradient optimization [40], which iteratively refines
a general prompt using examples belonging to one task,
e.g., optimizing one prompt to classify jailbreaking prompts.
Also, PRSA performance decreases when the dataset for
generating “grouped” categorical factors is bigger. As shown
in Table 11, results on “grouped” Awesome-GPT-Prompts
show that performance decreases when we additionally
incorporate 421 prompts from the in-the-wild dataset to
generate factors. In addition, we demonstrate in Section A
in the Appendix that LoRA fine-tuning with open-source
LLMs is insufficient for the prompt stealing attack.
Complexity. T-GPS with six iterations and four beams
costs around $0.30 using GPT-3.5-turbo-0125 on each of
Awesome-ChatGPT-Prompts (around 250 OpenAI requests
per prompt). PRSA requires extra effort for collecting cat-
egorical outputs, with complexity based on the collected
output count. Vanilla makes one request, and DORY makes
four, but needs token log probabilities, which are rarely
disclosed on social platforms. As shown in Table 12 and
Table 13, our results on Awesome-GPT-Prompts [3] show
that reduced iterations and beam sizes can still outperform
existing methods with two iterations and two beams (1/6
original cost), highlighting a trade-off between cost and
accuracy.
Defenses. Our findings indicate that a well-defined target

prompt with a clear objective can increase the likelihood
of successful recovery. To partially mitigate these risks, we
recommend that prompt engineers consider adding implicit
conditions, such as specifying role information, tone, style,
or output formatting within the target prompt. Another
approach is to incorporate distracting sentences directly in
the target output. These countermeasures can reduce the
effectiveness of prompt recovery by diverting the adversary’s
focus to less critical aspects. Another measure is to reduce
the overlap of keywords and phrases between the output
and the prompt, either through prompt engineering on the
prompt or sentence replacement in the output. Since the
adversary can only access the target output, minimizing such
overlaps makes it more challenging to infer the original
prompt. To exemplify the defenses, we conduct a case study
on a well-recovered prompt in Section B in the Appendix.
Practicability. In our evaluation, T-GPS is currently
the most effective prompt stealing attack on in-the-wild
prompts. It shows improved performance in recovering the
target output for both lexical precision and semantic fidelity,
with a BLEU score of 0.179, a METEOR score of 0.440,
a ROUGE-L score of 0.427, a BERTScore of 0.894, and a
sentence similarity of 0.923. However, high performance in
recovering the target output does not guarantee accuracy in
recovering the target prompt. T-GPS shows lower scores
in recovering the target prompt, with the highest scores
being BLEU 0.034, METEOR 0.253, BERTScore 0.860, and
SentenceSim 0.800. This is primarily due to the intrinsic
difficulty of prompt stealing attacks that multiple target
prompts with varying levels of detail can produce the same
target output. Therefore, determining whether to extract
more abstract information or to include specific details
that closely match the target output remains a fundamental
challenge for prompt stealing attacks in practical contexts.
Value of In-The-Wild Prompts. In-the-wild prompts are
sourced from real-world scenarios and encompass both nar-
rowly targeted and broadly generalized prompts, as well as
detailed and abstract prompts. Such diversity is crucial in
evaluating the generalization capabilities of prompt stealing
attacks. Therefore, attacks must not only focus on a portion
of prompts created by researchers but also consider the wide



TABLE 9: Performance of existing methods and our method in recovering target prompts (fidelity) in Awesome-GPT-
Prompts. PRSA evaluation includes 100 prompts categorized into groups and 26 prompts, each treated as a separate individual
class. T-GPS leverages GPT-3.5-turbo as the attack model.

Methods BLEU METEOR ROUGE-L BERTScore SentenceSim

Vanilla 0.014 ± 0.003 0.141 ± 0.012 0.196 ± 0.014 0.863 ± 0.003 0.759 ± 0.007
DORY 0.019 ± 0.009 0.160 ± 0.029 0.210 ± 0.028 0.864 ± 0.006 0.761 ± 0.018
PRSA (grouped) 0.031 ± 0.012 0.186 ± 0.034 0.219 ± 0.031 0.865 ± 0.007 0.757 ± 0.019
T-GPS 0.038 ± 0.013 0.246 ± 0.032 0.228 ± 0.027 0.859 ± 0.007 0.774 ± 0.012
PRSA (other) 0.034 ± 0.012 0.198 ± 0.029 0.236 ± 0.032 0.871 ± 0.006 0.804 ± 0.015
T-GPS (other) 0.049 ± 0.013 0.256 ± 0.033 0.244 ± 0.029 0.863 ± 0.008 0.801 ± 0.011

TABLE 10: Performance of existing methods and our method in recovering target prompts (fidelity) in Awesome-GPT-
Prompts. PRSA evaluation includes 100 prompts categorized into groups and 26 prompts, each treated as a separate individual
class. T-GPS leverages GPT-3.5-turbo as the attack model.

Methods BLEU METEOR ROUGE-L BERTScore SentenceSim

Vanilla 0.106 ± 0.019 0.334 ± 0.030 0.342 ± 0.026 0.878 ± 0.005 0.896 ± 0.015
DORY 0.115 ± 0.035 0.371 ± 0.048 0.361 ± 0.047 0.880 ± 0.010 0.905 ± 0.028
PRSA (grouped) 0.113 ± 0.037 0.367 ± 0.051 0.352 ± 0.052 0.880 ± 0.013 0.899 ± 0.035
T-GPS 0.194 ± 0.059 0.463 ± 0.066 0.453 ± 0.064 0.899 ± 0.013 0.935 ± 0.022
PRSA (other) 0.128 ± 0.027 0.396 ± 0.042 0.390 ± 0.040 0.889 ± 0.007 0.93 ± 0.018
T-GPS (other) 0.164 ± 0.045 0.440 ± 0.052 0.441 ± 0.052 0.896 ± 0.010 0.943 ± 0.015

TABLE 11: Performance of the PRSA with the extra in-
the-wild dataset to generate categorical factors in addition
to Awesome-GPT-Prompts. The first and second rows show
PRSA’s performance in recovering the target prompt and
target output, respectively.

Methods METEOR BERTScore SentenceSim

PRSA extra 0.164 ± 0.038 0.862 ± 0.009 0.752 ± 0.022
PRSA extra 0.348 ± 0.050 0.876 ± 0.011 0.901 ± 0.034

TABLE 12: Performance of T-GPS with reduced iterations
and beam sizes in recovering target prompts in Awesome-
GPT-Prompts with GPT-3.5-turbo.

Methods METEOR BERTScore SentenceSim

T-GPS r4b4 0.240 ± 0.029 0.861 ± 0.006 0.776 ± 0.012
T-GPS r4b2 0.226 ± 0.033 0.862 ± 0.007 0.773 ± 0.014
T-GPS r2b2 0.210 ± 0.034 0.864 ± 0.006 0.773 ± 0.013

TABLE 13: Performance of T-GPS with reduced iterations
and beam sizes in recovering target outputs in Awesome-
GPT-Prompts with GPT-3.5-turbo.

Methods METEOR BERTScore SentenceSim

T-GPS r4b4 0.458 ± 0.044 0.900 ± 0.009 0.935 ± 0.018
T-GPS r4b2 0.446 ± 0.049 0.897 ± 0.010 0.934 ± 0.020
T-GPS r2b2 0.424 ± 0.046 0.893 ± 0.009 0.927 ± 0.020

range of prompts actually used by real users.
Limitations. Our work has limitations. Our study focuses
on in-the-wild prompts without placeholders. However, there
are also prompts shared online with placeholders and inputs.
As they are not included in the paper’s scope, we leave the
evaluation on them as future work. In addition, our proposed
method T-GPS is case-specific. A promising direction for

future study could be to leverage LLM agents to perform
such attacks. By relying on the internal memory modules in
LLM agents, the model can accumulate experience, thereby
potentially improving efficacy.

8. Conclusion

In this paper, we perform the first systematic evaluation
of the prompt stealing attack on in-the-wild prompts. Our
comparative analysis reveals that academic prompts do not
fully encompass the characteristics of in-the-wild prompts,
making them less representative of prompts used in the real
world. By applying T-GPS, we achieve superior perfor-
mance compared to the existing methods, especially on well-
defined prompts with a clear objective, thereby establishing
a baseline for the prompt stealing attack on in-the-wild
prompts. However, despite the improved performance, our
extensive experiments and case studies show that T-GPS
excels only for a subset of in-the-wild prompts, thereby
underscoring the need for further exploration and refinement
to improve the effectiveness of prompt stealing attacks in
prompts used by real users. We hope our results can shed
light on the importance of evaluating the security of LLMs
in real-world application scenarios.
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TABLE 14: A case study on a well-recovered prompt
by T-GPS, with mean recovered metrics, 0.104, 0.470,
0.342, 0.905, and 0.885 for BLEU, METEOR, ROUGE-
L, BertScore, and SentenceSim. The scores after the de-
fense show decreased performances for BLEU, METEOR,
ROUGE-L, BERTScore, and SentenceSim, respectively.

Target
Prompt

Function as a resilience coach. Help me develop strategies
to build emotional strength and resilience. Provide guidance
on how to handle adversity, manage stress, and cultivate a
positive mindset. Include actionable steps and resources for
further support.

Target
Output

As a resilience coach, I can help you develop strategies to
build emotional strength and resilience. Here are some tips
and actionable steps to help you navigate adversity, manage
stress, and cultivate a positive mindset:
1. Practice self-care: ...
2. Build a support network: ...
3. Develop healthy coping mechanisms:...
4. Challenge negative thinking:...
5. Set realistic goals:...
6. Practice resilience-building activities:...
7. Seek professional help if needed:...
Resources for further support:... If you need further guidance
or support, feel free to reach out to me for additional
coaching and resources.

Defense 1 Remove role-play, formatting sentences, serial numbers, and
bullet words (0.020, 0.112, 0.097, 0.015, 0.024)

Defense 2 Replace the first and last sentences about coaching with one
distracting sentence on neuroscience (0.073, 0.190, 0.078,
0.009, 0.105)

Appendix A.
LoRA Fine-tuning Method

Motivated by the absence of prior efforts to apply fine-
tuning models on prompt stealing attacks, we explore the

efficacy of fine-tuning LLMs using LoRA adapters [27] to
address this challenge. To achieve this, we first split the in-
the-wild prompt-output pairs into a training set with 1,434
examples and a test set with 421 examples. Subsequently, we
fine-tune the models with LoRA to predict target prompts
based on the target outputs. Finally, the fine-tuned models
are evaluated on the test set to assess their performance. We
choose Llama2 [49], Llama3 [21], and Mistral [29] in this
experiment, based on their state-of-the-art performance and
varying parameter scales.

Specifically, we fine-tune Llama2-7B-chat-hf, Llama2-
13B-chat-hf, Llama2-70B-chat-hf, Llama3-8B-instruct,
Llama3-70B-instruct, and Mistral-7B-instruct-v0.3, along
with LoRA adaptors [27] before performing inference
on the test set. We set the fine-tuning epoch to 1 and
configure the LoRA parameters with alpha of 8, and r of
16, considering the limited size of the training set.

During inference, we leverage the VLLM [31] frame-
work with a temperature of 0.7 and a repetition penalty of
1.5. Concerning the repetition penalty, we find that adjust-
ing the repetition penalty to 1.5 prevents the models from
generating repetitive words and phrases.

We show the full LoRA [27] fine-tune results in Ta-
ble 16 and Table 17. The LoRA fine-tuning is insufficient
to recover both the target prompt and target output, com-
pared to existing methods in Table 2 and Table 3. The
best-performing fine-tuned LLM, Mistral-7B, only achieves
comparable results in recovering the target prompt and un-
derperforms in recovering the target output when compared
to the original Mistral-7B. This shows that the prompt
stealing attack is not a straightforward task that can be
accomplished by simply fine-tuning a model on prompt-
output pairs but requires more sophisticated approaches. The
larger language models gain more benefits from the LoRA
fine-tuning process. For instance, the METEOR scores for
Llama2-13b and Llama2-70b in recovering the target output
improve from 0.172 to 0.196 and from 0.145 to 0.203,
respectively. In addition, during the evaluation of Llama3-
8B and Llama3-70B, we observe that the original models,
without LoRA fine-tuning, struggled to recover anything
substantive, managing only to reproduce some spaces and
dashes.

Appendix B.
Defense Case Study

As shown in Table 14, we conduct a case study on
a well-recovered prompt by T-GPS. We implement two
defenses separately in target outputs but retain tips to build
resilience: First, we remove role-play, formatting sentences,
serial numbers, and bullet words; Second, we replace the
first and last sentences about coaching with one distracting
sentence on neuroscience. We observe an average decrease
in the recovered prompt with 0.020, 0.112, 0.097, 0.015,
0.024 for the first approach and 0.073, 0.190, 0.078, 0.009,
0.105 for the second approach.



TABLE 15: Examples of best-recovered and worst-recovered prompts, ranked by METEOR scores for recovering the target
prompt leveraging T-GPS. The scores behind the recovered prompt/output are the METEOR scores for recovering them,
respectively.

Target Prompt Recovered Prompt Target Output Recovered Output

Outline a business plan for a
subscription-based platform that
connects freelance professionals
with businesses in need of their
services. Include the platform’s
value proposition, target
market, pricing strategy, key
features, customer acquisition
strategies, revenue streams,
cost structure, and a plan for
scalability.

Develop a comprehensive busi-
ness plan for a subscription-based
platform called Freelance Con-
nect... Your plan should include
sections on the value proposition,
target market, pricing strategy,
key features, customer acquisi-
tion strategies, revenue streams,
cost structure, and plan for scal-
ability. Provide detailed... (0.833)

Business Plan: Freelance Connect
1.Value Proposition:...
2.Target Market:...
3.Pricing Strategy:...
4.Key Features:...
5.Customer Acquisition Strate-
gies:...
6.Revenue Streams:...
7.Cost Structure:...
8.Plan for Scalability:...
Freelance Connect aims to revolu-
tionize...

Business Plan: Freelance Connect
1. Executive Summary:...
2. Value Proposition:...
3. Target Market:...
4. Pricing Strategy:...
5. Key Features:...
6. Customer Acquisition Strate-
gies:...
7. Revenue Streams:...
8. Cost Structure:...
9. Plan for Scalability:... (0.432)

You help and buld a Perfect story Craft an enchanting and timeless
legend about a young girl named
Lily who dwells in a picturesque
village nestled between rolling
hills and lush forests. Lily is cele-
brated throughout the village for
her kind heart and adventurous
spirit, spending her days explor-
ing the woods, climbing trees, and
aiding her neighbors with their
tasks... (0.046)

Once upon a time in a picturesque
village nestled between rolling
hills and lush forests, there lived
a young girl named Lily. Lily...
One day, while wandering through
the forest, Lily...
Determined to uncover the trea-
sure and prove her bravery, Lily...
Finally, after many trials and tribu-
lations, Lily...
With her newfound abilities, Lily
became...

In the heart of the picturesque
village of Willowbrook, nestled
between rolling hills and lush
forests, there lived a young girl
named Lily. With her golden curls
and bright green eyes, she was
known throughout the village for
her kind heart and adventurous
spirit.\n \n Lily spent her days
exploring the woods, climbing
trees... (0.619)

TABLE 16: Evaluation on LoRA fine-tuning and original LLMs in recovering the target prompt on the in-the-wild dataset.
“SentenceSim” refers to the sentence cosine similarity.

Method METEOR BLEU ROUGE-L BERTScore SentenceSim

Mistral-7b 0.111 ± 0.029 0.005 ± 0.002 0.085 ± 0.025 0.833 ± 0.008 0.786 ± 0.023
LoRA-Mistral-7b 0.129 ± 0.040 0.004 ± 0.002 0.072 ± 0.026 0.811 ± 0.015 0.790 ± 0.029
Llama2-7b 0.061 ± 0.026 0.003 ± 0.002 0.052 ± 0.025 0.823 ± 0.012 0.734 ± 0.038
LoRA-Llama2-7b 0.090 ± 0.023 0.001 ± 0.001 0.025 ± 0.013 0.779 ± 0.011 0.746 ± 0.030
Llama2-13b 0.078 ± 0.033 0.004 ± 0.003 0.069 ± 0.033 0.823 ± 0.014 0.746 ± 0.034
LoRA-Llama2-13b 0.103 ± 0.033 0.002 ± 0.002 0.044 ± 0.020 0.797 ± 0.016 0.767 ± 0.030
Llama2-70b 0.077 ± 0.038 0.002 ± 0.002 0.051 ± 0.028 0.801 ± 0.022 0.733 ± 0.040
LoRA-Llama2-70b 0.116 ± 0.038 0.003 ± 0.002 0.056 ± 0.027 0.804 ± 0.016 0.778 ± 0.032
Llama3-8b 0.002 ± 0.002 0.000 ± 0.000 0.002 ± 0.002 0.388 ± 0.095 0.629 ± 0.016
LoRA-Llama3-8b 0.070 ± 0.024 0.000 ± 0.000 0.017 ± 0.010 0.784 ± 0.009 0.651 ± 0.066
Llama3-70b 0.003 ± 0.002 0.000 ± 0.000 0.001 ± 0.001 0.571 ± 0.083 0.625 ± 0.008
LoRA-Llama3-70b 0.080 ± 0.030 0.001 ± 0.001 0.019 ± 0.013 0.782 ± 0.012 0.695 ± 0.063

TABLE 17: Evaluation on LoRA fine-tuning and original LLMs in recovering the target output on the in-the-wild dataset.
“SentenceSim” refers to the sentence cosine similarity.

Method METEOR BLEU ROUGE-L BERT Score SentenceSim

Mistral-7b 0.289 ± 0.050 0.057 ± 0.026 0.275 ± 0.046 0.863 ± 0.011 0.854 ± 0.034
LoRA-Mistral-7b 0.243 ± 0.062 0.039 ± 0.023 0.229 ± 0.055 0.848 ± 0.017 0.806 ± 0.061
Llama2-7b 0.185 ± 0.057 0.028 ± 0.017 0.195 ± 0.051 0.840 ± 0.015 0.747 ± 0.068
lora-Llama2-7b 0.159 ± 0.064 0.015 ± 0.013 0.155 ± 0.052 0.824 ± 0.019 0.689 ± 0.084
Llama2-13b 0.172 ± 0.065 0.027 ± 0.019 0.186 ± 0.058 0.838 ± 0.017 0.748 ± 0.073
LoRA-Llama2-13b 0.196 ± 0.070 0.027 ± 0.020 0.189 ± 0.060 0.835 ± 0.021 0.745 ± 0.080
Llama2-70b 0.145 ± 0.076 0.023 ± 0.019 0.158 ± 0.070 0.827 ± 0.024 0.703 ± 0.095
LoRA-Llama2-70b 0.203 ± 0.072 0.031 ± 0.022 0.202 ± 0.065 0.839 ± 0.021 0.761 ± 0.082
Llama3-8b 0.014 ± 0.003 0.000 ± 0.000 0.029 ± 0.005 0.790 ± 0.002 0.452 ± 0.010
LoRA-Llama3-8b 0.145 ± 0.075 0.015 ± 0.014 0.145 ± 0.061 0.818 ± 0.024 0.665 ± 0.105
Llama3-70b 0.016 ± 0.005 0.001 ± 0.001 0.030 ± 0.004 0.790 ± 0.001 0.454 ± 0.008
LoRA-Llama3-70b 0.190 ± 0.083 0.029 ± 0.022 0.187 ± 0.071 0.833 ± 0.025 0.734 ± 0.105



Appendix C.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary

This paper focuses on prompt stealing attacks where
the attacker tries to infer the prompt (system prompt) of
a target LLM using the target LLM’s apriori output(s).
First, the authors measure the differences (e.g., length,
semantics, topics) between prompts in academic datasets
(used by some prior prompt stealing papers) and in-the-wild
prompts. Then, they reveal that prior prompt stealing attacks
perform poorly on in-the-wild prompts. Finally, they design
a new prompt-stealing attack T-GPS (Text Gradient-based
Prompt Stealing). T-GPS uses LLM-based text gradients to
improve prompt-stealing performance, particularly for well-
defined prompts with clear objectives. They also identify
a remaining limitation where the attack cannot determine
the appropriate level of abstraction for the stolen prompt, as
multiple different prompts could potentially generate similar
outputs.

C.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established Field
• Independent Confirmation of Important Results with Lim-

ited Prior Research
• Addresses a Long-Known Issue
• Identifies an Impactful Vulnerability

C.3. Reasons for Acceptance

1) This represents the first systematic study to focus on
prompt-stealing attacks against “in-the-wild” prompts,
more representative of real-world usage than academic
datasets.

2) The comparative analysis between academic and in-the-
wild prompts, including difficulties in abstract prompt
reconstruction and overfitting to target outputs, reveals
the practical limitations of current prompt-stealing
methods and pinpoints specific areas where they fail.

3) The study proposes a simple but more effective prompt
stealing attack, T-GPS, that improves prompt recovery
slightly and output recovery significantly.

C.4. Noteworthy Concerns

The proposed T-GPS attack offers limited technical nov-
elty and applies popular text gradient optimization methods
(also used in prior attacks) without significant technical
innovation. Although the study identifies several aspects that

make certain prompts challenging to steal (such as having
an ambiguous level of abstraction), it doesn’t attempt to
provide a technical solution tailored to these challenges.
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